淄博光伏太阳能

新闻分类

产品分类

热门关键词

联系我们

淄博铭洋能源有限公司

联系人:许经理   13053383137

            杨经理   13964468417

邮箱:1791019667@qq.com  

地址:山东省淄博市淄川区公义大街80号


光伏发电系统中逆变器的原理与应用

您的当前位置: 首 页 >> 新闻中心 >> 技术知识

光伏发电系统中逆变器的原理与应用

发布日期:2020-06-03 作者: 点击:

  目前我国淄博光伏发电系统主要采用直流系统,利用太阳能电池产生的电能对电池进行充电,电池直接提供负载。例如,在中国西北地区广泛使用的太阳能家用照明系统和远离电网的微波站供电系统都是直流系统。这种系统结构简单,成本低。但由于负载的直流电压不同(如12V、24V、48V等),难以实现系统的标准化和兼容性,尤其是民用电力。由于光伏电源多为交流负载,直流电源作为一种商品难以进入市场。

  此外,光伏发电最终将接入电网,这需要采用成熟的市场模式。在未来,交流光伏发电系统将成为光伏发电的主流。光伏发电系统需要逆变电源。它由光伏阵列、充放电控制器、电池和逆变器组成(电池一般可在并网发电系统中保存)。逆变器是关键部件。光伏发电系统对逆变器要求较高:

  1. 需要高效率。由于目前太阳能电池价格较高,为了最大限度的利用太阳能电池,提高系统的效率,有必要提高逆变器的效率。

  2. 高可靠性是必需的。目前,光伏发电系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有一个合理的电路结构,严格选择的组件,并需要配备各种变频器的保护功能,如输入直流极性反转保护、交流输出短路保护,过热,过载保护等。

  3.直流输入电压适应范围宽,因此太阳能电池的端电压随负载和阳光强度,尽管电池电压在太阳能电池中起着重要的作用,但由于电池的电压波动根据电池剩余容量和内部阻力的变化,特别是当电池老化的电压变化范围非常大,比如12v蓄电池,其10 v ~ 16之间的电压可能会改变,这就要求逆变器的直流输入电压必须在较大的范围内才能保证正常工作,并保证交流输出电压的稳定。

淄博光伏发电.png

  4.在中、大容量的光伏发电系统中,逆变电源的输出应为失真度较小的正弦波。这是由于在中、大容量系统中,若采用方波供电,则输出将含有较多的谐波分量,高次谐波将产生附加损耗,许多光伏发电系统的负载为通信或仪表设备,这些设备对电网品质有较高的要求,当中、大容量的光伏发电系统并网运行时,为避免与公共电网的电力污染,也要求逆变器输出正弦波电流。逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。

  推挽电路和全桥电路的输出都必须加升压变压器,由于升压变压器体积大,效率低,价格也较贵,随着电力电子技术和微电子技术的发展,采用高频升压变换技术实现逆变,可实现高功率密度逆变,这种逆变电路的前级升压电路采用推挽结构,但工作频率均在20KHz以上,升压变压器采用高频磁芯材料,因而体积小、重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电(一般均在300V以上)再通过工频逆变电路实现逆变。采用该电路结构,使逆变器功率大大提高,逆变器的空载损耗也相应降低,效率得到提高,该电路的缺点是电路复杂,可靠性比上述两种电路低。


本文网址:http://www.mingyangnengyuan.com/news/488.html

关键词:光伏发电,淄博光伏发电,淄博光伏太阳能

最近浏览:

  • 在线客服
  • 联系电话
    13053383137
  • 在线留言
  • 在线咨询
    欢迎给我们留言
    请在此输入留言内容,我们会尽快与您联系。
    姓名
    联系人
    电话
    座机/手机号码
    邮箱
    邮箱
    地址
    地址